

NASA Earth Science Enterprise Technology Planning Workshop

Overview of Key Technology Areas

Fuk Li

New Millennium Program

Jet Propulsion Laboratory, California Institute of Technology

January 23-24, 2001 Hyatt Arlington Hotel - Arlington, VA

NMP Program

01-23-01-NMP-KeyTechnolOverview

Develop Technology Validation Needs Inventory

- Analyze Earth Science capability needs
- Capitalize on pipeline investments
- Require strong flight validation rationale

NMP Process Development of Earth Science Flight Validation Needs Inventory

- Identified key emerging technologies requiring flight validation
 - Six "Mini" Workshops held 3/00-8/00
 - Technology Roadmaps and Strawman Mission scenarios created for each technology area
 - Integrated technology plans developed with ESTO where flight validations are needed
- Examples of Workshop products shown in subsequent charts
 - Benefits
 - Technology Roadmap
 - Strawman Mission scenario
 - Integrated technology plans
- Full sets of charts provided in breakout sessions

Emerging Technology Subsystem Themes

Several recurring technology subsystem validation "themes" have emerged. Each technology theme benefits a broad set of Earth Science measurements.

Large Deployable
Microwave/ Millimeter
Antennas

Large Deployable Visible/IR Optics

Optical
Coptical
Communications
Coptical
Coptica

Autonomous Constellation Control/Operation

High Performance Spectrometry

Summary of "Mini" Workshop Key Findings

Workshop Title

Large, Light-Weight Deployable Antennas

Key Conclusions

Needed for multiple missions

- Soil Moisture, SAR's, Rain Radar
- Planar, Cyl, & Reflectors

Trade Studies:

Next Steps

- Component vs. subsystem
- Antenna type hybrid?
- Identify partners

Intelligent Distributed
Spacecraft Infrastructure

Flight validation required:

- Spacecraft formation flying command and control
 Global Precipitation
 - -Global Precipitation Measurement
- Virtual platforms
 - system validation needed?

Trade Studies:

- Subsystem tests vs. system
- Refine user requirements

Ultra-High Data Rate Communications

Multiple needs identified. Optical comm and ultra high rate RF components require flight validation •Experiment partners

•Technology development for W & V-Band, Tera-Hz

Light-Weight, Deployable UV/Visible/IR Telescopes

Needed for DIAL

- Tropospheric chemistry
- Deployment, stability need flight validation

•Identify other customers

- IR Imaging?
- •Refine validation needs
- •Identify flight partners

High Performance Spectrometry

- Hyperspectral Land/Ocean
- Atmospheric Physics/Chemistry

Hyperspectral customers/needs

- Land/Ocean hyperspectral
- S/N, stability, swath width Atmospheric customers/needs
- Trop/Strat Chemistry
- Greenhouse gas monitoring
- Clouds/Aerosols
- •-5-Fast, high dispersion optics

- Other communities needs/ capabilities?
- Spectral range (>2.5µm?)
- Leo/GEO S/N, resolution
- On-board processing needs
- On-orbit calibration needs
- Pointing/stability systems

01-23-01-NMP-KeyTechnolOverview

Large Deployable Antennas Benefit Multiple Earth Science Applications

Soil Moisture Measurements

Large Deployable Mesh Antenna

Planar Array Antenna

25m class antennas for 10km horizontal resolution

Global Precipitation Measurements

- 5-20m class antenna for 2km horizontal resolution with wide-swath scan
- Potential extension to geostationary orbits

Natural Hazard

 3x10m antennas for wideswath/high SNR LEO,
 30m class for GFO

Strawman Technology Validation Experiment: Inflatable Antennas for Earth Science Applications

Antenna Type: Half Planar (5x3m)

Half Cylindrical Parabola (5x7m-curved)

Heritage: ESP IIP; inflatable planar array ground

demonstration

Frequency: 1-35 GHz

Tech. Validation

Objectives: - packaging/deployment

surface shape control/roughnessmaterial rigidization/survivability

- ~1 yr. duration

Applications: - Cylindrical parabola for precipitation radar

measurements with high resolution/wide

swath

- Natural hazard studies with SAR

Antenna Type: Lenticular Off-Set Parabola (16m-diameter)

Heritage: Inflatable Antenna Experiment (Shuttle

experiment '96)

Frequency: 1-35 GHz

Tech. Validation

Objectives: - packaging/deployment

surface shape control/roughnessmaterial rigidization/survivability

pointing control~1 yr. duration

Applications: - Soil moisture measurements at ~10km

resolution

- Meteorological radar measurements at

GEO

Integrated Technology Plan for Large Deployable Reflector Antennas

Intelligent Distributed Spacecraft Infrastructure for Constellation Observatory

Formation Flying

- Autonomous reconfiguration
- Closed-loop platform control
- Coordinated observations
- Orbit maintenance
- Interspacecraft communications

Sensor/Satellite Networks

- Continuous communication coverage via asymmetric, hybrid links
- Management of complex, multinode heterogeneous networks
- Scalable design for incremental network growth
- Graceful degradation to network performance during stress
- Robust routing, adaptive bandwith allocation, and intelligent power control of nodes

Global Precipitation Measurements

- Integrated observatory with autonomous constellation control/operation
- Inter-satellite communications
 - Optimize science return with data link capacity
 - Space/Ground Protocol
 - Data downlink via commercial network

Future Observation Systems

 Provide intelligent infrastructure to support sensor web

Integrated Technology Plan To Enable Global Precipitation Measurements

Objective:

• Provide systematic estimation of global precipitation with three hours or less sampling interval

Breakout Session Objectives

- Clarify the relevance of each class of technologies for future ESE science mission objectives
 - new science investigations enabled by technologies
 - new measurement type, new vantage points (MEO, GEO, L1, L2)
 - requirements for spatial, temporal, or spectral resolution or sampling
 - needed by multiple measurement approaches?
 - anticipated time scale for science mission
- Define technology development/flight validation needs
 - capabilities that require new technology development

- Identify requirements for flight validation
 - justification
 - objectives, scope, and milestones
 - top-level validation flight development scenario

Breakout Session Chairs and Facilitators

TOPIC	Co-chair	Co-chair	Facilitator
Lightweight Deployable Antennas	R. Kakar, NASA HQ	D. Schaubert, U Mass	M. Lou JPL
High Rate Comms	G. Prescott, NASA HQ	K.Bhasin, GRC	F. Lansing, JPL
Deployable Telescopes	E. Browell, LaRC	F. Peri, GSFC	R. Connerton, GSFC
Distributed S/C Infrastructure	M. Schoeberl, GSFC	J. Bristow, GSFC	C. Raymond, JPL
Precision Navigation	J. LaBrecque, NASA HQ	P. Axelrad, U Colo.	J. Hartley, GSFC
Onboard Data Processing	E. Paylor, NASA HQ	G. Bothwell, JPL	A. Walton, JPL
Integrated Optics and Spectral Dispersion Technologies	D. Wickland, NASA HQ	J. Gleason, GSFC	D. Crisp, JPL
Laser Technology	U. Singh, LaRC	J. Spinhirne, GSFC	R. Menzies, JPL
Innovative technologies	L. Schuster, NASA HQ	B. Wilson, JPL	M. Buehler, JPL

Breakout Session Approach

Presentations (10 to 15 minutes each)

- Invited Talks/Contributed Talks
 - Science needs and measurement requirements
 - Technology capability needs

Discussion

- Identify matches between science needs and technology capabilities
- Identify technology/capability trades, etc.

Preparation of Products

Breakout Session Products

Science Capability Need

- Relevance to Future ESE Science Missions
- Science / Measurement Requirements
 - Application to Multiple Missions

Candidate Technology

- Description/Illustration of Technology
- Technology Development Roadmap

Implementation

- Ground development / Validation
- Flight Validation
 - Description/Justification/Benefits
 - Accommodation Requirements / Schedule